Introduction to meta-analysis
Steps of a Cochrane review

1. define the question
2. plan eligibility criteria
3. plan methods
4. search for studies
5. apply eligibility criteria
6. collect data
7. assess studies for risk of bias
8. **analyse and present results**
9. interpret results and draw conclusions
10. improve and update review
Session outline

• principles of meta-analysis
• steps in a meta-analysis
• presenting your results

See Chapter 9 of the Handbook
Source: Jo McKenzie & Miranda Cumpston
What is a meta-analysis?

• combines the results from two or more studies
• estimates an ‘average’ or ‘common’ effect
• optional part of a systematic review

Source: Julian Higgins
Why perform a meta-analysis?

- quantify treatment effects and their uncertainty
- increase power
- increase precision
- explore differences between studies
- settle controversies from conflicting studies
- generate new hypotheses

Source: Julian Higgins
When not to do a meta-analysis

• **mixing apples with oranges**
 • each included study must address same question
 • consider comparison and outcomes
 • requires your subjective judgement
 • combining a broad mix of studies answers broad questions
 • answer may be meaningless and genuine effects may be obscured if studies are too diverse

Source: Julian Higgins
When not to do a meta-analysis

• garbage in – garbage out
 • a meta-analysis is only as good as the studies in it
 • if included studies are biased:
 • meta-analysis result will also be incorrect
 • will give more credibility and narrower confidence interval
 • if serious reporting biases present:
 • unrepresentative set of studies may give misleading result

Source: Julian Higgins
When can you do a meta-analysis?

- more than one study has measured an effect
- the studies are sufficiently similar to produce a meaningful and useful result
- the outcome has been measured in similar ways
- data are available in a format we can use
Session outline

• principles of meta-analysis
• steps in a meta-analysis
• presenting your results
Steps in a meta-analysis

• identify comparisons to be made
• identify outcomes to be reported and statistics to be used
• collect data from each relevant study
• combine the results to obtain the summary of effect
• explore differences between the studies
• interpret the results
Selecting comparisons

Hypothetical review: Caffeine for daytime drowsiness

- caffeinated coffee vs decaffeinated coffee

• break your topic down into pair-wise comparisons
• each review may have one or many
• use your judgement to decide what to group together, and what should be a separate comparison
Selecting outcomes & effect measures

Hypothetical review: Caffeine for daytime drowsiness

- caffeinated coffee vs decaffeinated coffee

 - asleep at end of trial (RR)
 - irritability (MD/SMD)
 - headaches (RR)

- for each comparison, select outcomes
- for each outcome, select an effect measure
- may depend on the available data from included studies
Calculating the summary result

• collect a summary statistic from each contributing study
• how do we bring them together?
 • treat as one big study – add intervention & control data?
 • breaks randomisation, will give the wrong answer
 • simple average?
 • weights all studies equally – some studies closer to the truth
 • weighted average
Weighting studies

• more weight to the studies which give more information
 • more participants, more events, narrower confidence interval
 • calculated using the effect estimate and its variance

• inverse-variance method:

\[
weight = \frac{1}{\text{variance of estimate}} = \frac{1}{SE^2}
\]

\[
pooled \text{ estimate} = \frac{\text{sum of (estimate} \times \text{weight)}}{\text{sum of weights}}
\]
For example

<table>
<thead>
<tr>
<th>Headache</th>
<th>Caffeine</th>
<th>Decaf</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amore-Coffea 2000</td>
<td>2/31</td>
<td>10/34</td>
<td></td>
</tr>
<tr>
<td>Deliciozza 2004</td>
<td>10/40</td>
<td>9/40</td>
<td></td>
</tr>
<tr>
<td>Mama-Kaffa 1999</td>
<td>12/53</td>
<td>9/61</td>
<td></td>
</tr>
<tr>
<td>Morrocona 1998</td>
<td>3/15</td>
<td>1/17</td>
<td></td>
</tr>
<tr>
<td>Norscafe 1998</td>
<td>19/68</td>
<td>9/64</td>
<td></td>
</tr>
<tr>
<td>Oohlahlazza 1998</td>
<td>4/35</td>
<td>2/37</td>
<td></td>
</tr>
<tr>
<td>Piazza-Allerta 2003</td>
<td>8/35</td>
<td>6/37</td>
<td></td>
</tr>
</tbody>
</table>
For example

<table>
<thead>
<tr>
<th>Headache</th>
<th>Caffeine</th>
<th>Decaf</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amore-Coffea 2000</td>
<td>2/31</td>
<td>10/34</td>
<td>6.6%</td>
</tr>
<tr>
<td>Deliciozza 2004</td>
<td>10/40</td>
<td>9/40</td>
<td>21.9%</td>
</tr>
<tr>
<td>Mama-Kaffa 1999</td>
<td>12/53</td>
<td>9/61</td>
<td>22.2%</td>
</tr>
<tr>
<td>Morrocona 1998</td>
<td>3/15</td>
<td>1/17</td>
<td>2.9%</td>
</tr>
<tr>
<td>Norscafe 1998</td>
<td>19/68</td>
<td>9/64</td>
<td>26.4%</td>
</tr>
<tr>
<td>Oohlahlazza 1998</td>
<td>4/35</td>
<td>2/37</td>
<td>5.1%</td>
</tr>
<tr>
<td>Piazza-Allerta 2003</td>
<td>8/35</td>
<td>6/37</td>
<td>14.9%</td>
</tr>
</tbody>
</table>
Meta-analysis options

• for dichotomous or continuous data
 • inverse-variance
 • straightforward, general method
• for dichotomous data only
 • Mantel-Haenszel (default)
 • good with few events – common in Cochrane reviews
 • weighting system depends on effect measure
 • Peto
 • for odds ratios only
 • good with few events and small effect sizes (OR close to 1)
Session outline

- principles of meta-analysis
- steps in a meta-analysis
- presenting your results
A forest of lines

Trees Joyce Kilmer Forest by charlesleonard http://www.flickr.com/photos/charlesleonard/3754931947/
Forest plots

Headache at 24 hours

- headings explain the comparison
Forest plots

Headache at 24 hours

- list of included studies
Headache at 24 hours

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Caffeinated coffee</th>
<th>Decaffeinated coffee</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Events</td>
</tr>
<tr>
<td>Amore-Cofea 2000</td>
<td>2</td>
<td>31</td>
<td>10</td>
</tr>
<tr>
<td>Deliciozza 2004</td>
<td>10</td>
<td>40</td>
<td>9</td>
</tr>
<tr>
<td>Mama-Kaffa 1999</td>
<td>12</td>
<td>53</td>
<td>9</td>
</tr>
<tr>
<td>Morrocona 1998</td>
<td>3</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>Norscafe 1998</td>
<td>19</td>
<td>68</td>
<td>9</td>
</tr>
<tr>
<td>Oohlahlaza 1998</td>
<td>4</td>
<td>35</td>
<td>2</td>
</tr>
<tr>
<td>Piazza-Allerta 2003</td>
<td>8</td>
<td>35</td>
<td>6</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>58</td>
<td>277</td>
<td>46</td>
</tr>
</tbody>
</table>

Total events: 58, 277
Heterogeneity: Chi² = 8.58, df = 6 (P = 0.20), I² = 30%
Test for overall effect: Z = 1.73 (P = 0.08)

- raw data for each study
Forest plots

Headache at 24 hours

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Caffeinated coffee</th>
<th>Decaffeinated coffee</th>
<th>Risk Ratio</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Events</td>
<td>Total</td>
</tr>
<tr>
<td>Amore-Coffea 2000</td>
<td>2</td>
<td>31</td>
<td>10</td>
<td>34</td>
</tr>
<tr>
<td>Deliciozza 2004</td>
<td>10</td>
<td>40</td>
<td>9</td>
<td>40</td>
</tr>
<tr>
<td>Mama-Kaffa 1999</td>
<td>12</td>
<td>53</td>
<td>9</td>
<td>61</td>
</tr>
<tr>
<td>Morrocona 1998</td>
<td>3</td>
<td>15</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>Norscafe 1998</td>
<td>19</td>
<td>68</td>
<td>9</td>
<td>64</td>
</tr>
<tr>
<td>Oohlahlazza 1998</td>
<td>4</td>
<td>35</td>
<td>2</td>
<td>37</td>
</tr>
<tr>
<td>Piazza-Allerta 2003</td>
<td>9</td>
<td>25</td>
<td>6</td>
<td>37</td>
</tr>
</tbody>
</table>

Total (95% CI)

- **Total events**: 58
- **Total data for all studies**: 277
- **Favours caffeine**: 290
- **Favours decaf**: 190.0%
- **Risk Ratio**: 1.38 [0.96, 2.00]

Heterogeneity

- $\chi^2 = 8.58$, df = 6 ($P = 0.20$); $I^2 = 30\%$
- Test for overall effect: $Z = 1.73$ ($P = 0.08$)

- **total data for all studies**
Headache at 24 hours

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Events Caffeinated</th>
<th>Total Caffeinated</th>
<th>Events Decaffeinated</th>
<th>Total Decaffeinated</th>
<th>Weight</th>
<th>Risk Ratio IV, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amore-Coffea 2000</td>
<td>2</td>
<td>31</td>
<td>10</td>
<td>40</td>
<td>6.6%</td>
<td>0.22 [0.05, 0.92]</td>
</tr>
<tr>
<td>Deliciozsa 2004</td>
<td>10</td>
<td>40</td>
<td>9</td>
<td>49</td>
<td>21.9%</td>
<td>1.11 [0.51, 2.44]</td>
</tr>
<tr>
<td>Mama-Kaffa 1999</td>
<td>12</td>
<td>53</td>
<td>9</td>
<td>62</td>
<td>22.2%</td>
<td>1.53 [0.70, 3.35]</td>
</tr>
<tr>
<td>Morrocona 1998</td>
<td>3</td>
<td>15</td>
<td>1</td>
<td>16</td>
<td>2.9%</td>
<td>1.40 [0.39, 29.31]</td>
</tr>
<tr>
<td>Norscafe 1998</td>
<td>19</td>
<td>68</td>
<td>9</td>
<td>77</td>
<td>26.4%</td>
<td>1.99 [0.97, 4.07]</td>
</tr>
<tr>
<td>Oohlahlaza 1998</td>
<td>4</td>
<td>35</td>
<td>2</td>
<td>37</td>
<td>5.1%</td>
<td>2.11 [0.41, 10.83]</td>
</tr>
<tr>
<td>Piazza-Allerta 2003</td>
<td>8</td>
<td>35</td>
<td>6</td>
<td>41</td>
<td>14.9%</td>
<td>1.41 [0.54, 3.65]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>277</td>
<td></td>
<td>290</td>
<td></td>
<td>100.0%</td>
<td>1.38 [0.96, 2.00]</td>
</tr>
<tr>
<td>Total events</td>
<td>58</td>
<td></td>
<td>46</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Chi² = 8.58, df = 6 (P = 0.20); I² = 30%
Test for overall effect: Z = 1.73 (P = 0.08)

- weight given to each study
Forest plots

Headache at 24 hours

- effect estimate for each study, with CI
Forest plots

Headache at 24 hours

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Caffeinated coffee</th>
<th>Decaffeinated coffee</th>
<th>Risk Ratio IV, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events Total</td>
<td>Events Total</td>
<td></td>
</tr>
<tr>
<td>Amore-Coffea 2000</td>
<td>2 31</td>
<td>10 34</td>
<td>6.6% 0.22 [0.05, 0.92]</td>
</tr>
<tr>
<td>Deliciozza 2004</td>
<td>10 40</td>
<td>9 40</td>
<td>21.9% 1.11 [0.51, 2.44]</td>
</tr>
<tr>
<td>Mama-Kaffa 1999</td>
<td>12 53</td>
<td>9 61</td>
<td>22.2% 1.53 [0.70, 3.35]</td>
</tr>
<tr>
<td>Morrocona 1998</td>
<td>3 15</td>
<td>1 17</td>
<td>2.9% 3.40 [0.39, 29.31]</td>
</tr>
<tr>
<td>Norscafe 1998</td>
<td>19 68</td>
<td>9 64</td>
<td>26.4% 1.99 [0.97, 4.07]</td>
</tr>
<tr>
<td>Oohlahlazza 1998</td>
<td>4 35</td>
<td>2 37</td>
<td>5.1% 2.11 [0.41, 10.83]</td>
</tr>
<tr>
<td>Piazza-Allerta 2003</td>
<td>8 35</td>
<td>6 37</td>
<td>14.9% 1.41 [0.54, 3.65]</td>
</tr>
</tbody>
</table>

Total events: 277 290 100.0% 1.38 [0.96, 2.00]

Heterogeneity: Chi² = 8.58, df = 6 (P = 0.20); I² = 30%
Test for overall effect: Z = 1.73 (P = 0.08)

• effect estimate for each study, with CI
Forest plots

Headache at 24 hours

- scale and direction of benefit
Forest plots

Headache at 24 hours

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Caffeinated coffee</th>
<th>Decaffeinated coffee</th>
<th>Risk Ratio IV, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amore-Cofea 2000</td>
<td>2</td>
<td>10</td>
<td>0.22 [0.05, 0.92]</td>
</tr>
<tr>
<td>Delicicozza 2004</td>
<td>10</td>
<td>9</td>
<td>1.11 [0.51, 2.44]</td>
</tr>
<tr>
<td>Mama-Kaffa 1999</td>
<td>12</td>
<td>9</td>
<td>1.53 [0.70, 3.35]</td>
</tr>
<tr>
<td>Morrocona 1998</td>
<td>3</td>
<td>1</td>
<td>3.40 [0.39, 29.31]</td>
</tr>
<tr>
<td>Norscafe 1998</td>
<td>19</td>
<td>9</td>
<td>1.99 [0.97, 4.07]</td>
</tr>
<tr>
<td>Oohlahlaza 1998</td>
<td>4</td>
<td>2</td>
<td>2.11 [0.41, 10.83]</td>
</tr>
<tr>
<td>Piazza-Allerta 2003</td>
<td>8</td>
<td>6</td>
<td>1.41 [0.54, 3.65]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>58</td>
<td>46</td>
<td>1.38 [0.96, 2.00]</td>
</tr>
</tbody>
</table>

- Heterogeneity: Chi² = 8.58, df = 6 (P = 0.20); I² = 30%
- Test for overall effect: Z = 1.73 (P = 0.08)

pooled effect estimate for all studies, with CI
Interpreting confidence intervals

• always present estimate with a confidence interval

• precision
 • point estimate is the best guess of the effect
 • CI expresses uncertainty – range of values we can be reasonably sure includes the true effect

• significance
 • if the CI includes the null value
 • rarely means evidence of no effect
 • effect cannot be confirmed or refuted by the available evidence
 • consider what level of change is clinically important
The Results section of your review

- a systematic, narrative summary of results
- forest plots
 - key forest plots linked as figures
 - usually primary outcomes
 - all forest plots will be published as supplementary data
 - avoid forest plots with only one study
- may also add other data tables
 - results of single studies
 - summary data for each group, effect estimates, confidence intervals
 - non-standard data
- not helpful to report trivial outcomes or results at high risk of bias
Take home message

• there are several advantages to performing a meta-analysis but it is not always possible (or appropriate)
• plan your analysis carefully, including comparisons, outcomes and meta-analysis methods
• forest plots display the results of meta-analyses graphically
• interpret your results with caution
References

Acknowledgements

• Compiled by Miranda Cumpston

• Based on materials by Sally Hopewell, Julian Higgins, the Cochrane Statistical Methods Group and the Dutch Cochrane Centre

• Approved by the Cochrane Methods Board